Respuesta :

Answer:  

[tex]y=\displaystyle\frac{2\ln x}{x}+\frac{1}{x}[/tex]

Step-by-step explanation:

Divide both sides of the equation by [tex]x^2[/tex]:

[tex]\displaystyle y'-\frac{1}{x}y=\frac{2}{x^2}[/tex]

Find the integrating factor:

[tex]u=e^{\int\frac{1}{x}}=e^{\ln x}=x[/tex]

Multiply the equation by the integrating factor:

[tex]\displaystyle xy'-y=\frac{2}{x}[/tex]

The left side is the derivative of (xy), therefore we can write the equation as:

[tex]\displaystyle\frac{d(xy)}{dx}=\frac{2}{x}[/tex]

That is a separable equation. We separate and integrate:

[tex]\displaystyle\int d(xy)=\int\frac{2}{x}dx[/tex]

We get:

[tex]xy=2\ln x + C[/tex]

Then plug the initial value y(1)=1, which means to plug x=1 and y=1:

[tex]1(1)=2\ln 1 + C\to 1= C[/tex]

Therefore, the solution once we plug C=1 becomes:

[tex]xy=2\ln x+1[/tex]

Then solving for y by dividing both sides by x, we get:

[tex]y=\displaystyle\frac{2\ln x}{x}+\frac{1}{x}[/tex]