Answer:
[tex]v_{m} =2Mv/(M+m)[/tex]
Explanation:
before the collision, the velocity of the heavy particle is v:
[tex]p=Mv[/tex]
[tex]E=1/2Mv^2[/tex]
After the collision :
[tex]p=mv_{m}+Mv_{M}[/tex]
[tex]E=1/2mv_{m} ^{2} +1/2Mv_{M} ^{2}[/tex]
So:
[tex]Mv=mv_{m}+Mv_{M}[/tex] (1)
[tex]1/2Mv^{2}=1/2mv_{m} ^{2} +1/2Mv_{M} ^{2}[/tex] ⇒ [tex]Mv^{2}=mv_{m} ^{2} +Mv_{M} ^{2}[/tex] (2)
in the first equation:
[tex]v_{M} ^{2}=(1/M*(Mv-mv_{m}))^{2}[/tex]
if we replace [tex]v_{M}[/tex] in the equation (2):
[tex]Mv^{2}=mv_{m} ^{2}+1/M*(Mv-mv_{m})^{2}[/tex]
[tex]M^{2}*v^{2}=mMv_{m} ^{2}+M^{2}*v^{2}-2Mmvv_{m}+m^{2}v_{m}^{2}[/tex]
so:
[tex]0=Mv_{m} ^{2}-2Mvv_{m}+mv_{m}^{2}[/tex]
[tex]2Mvv_{m}=Mv_{m} ^{2}+mv_{m}^{2}=v_{m} ^{2}(M+m)[/tex]
Finally:
[tex]v_{m} =2Mv/(M+m)[/tex]