The velocity of a particle moving along the x-axis varies with time according to v(t) = A + Bt−1 , where A = 2 m/s, B = 0.25 m, and 1.0 s ≤ t ≤ 8.0 s . Determine the acceleration and position of the particle at t = 2.0 s and t = 5.0 s. Assume that x(t = 1 s) = 0 .

Respuesta :

Answer:

[tex]a= -2\ m/s^2[/tex]

[tex]a=-12.5\ m/s^2[/tex]

x=2.17 m

x=8.4 m

Explanation:

Given that

[tex]v=A+Bt^{-1}[/tex]

[tex]v=2+0.25t^{-1}[/tex]

To find acceleration :

we know that

[tex]a=\dfrac{dv}{dt}[/tex]

[tex]\dfrac{dv}{dt}=0-0.5t^{-2}[/tex]

[tex]a=-0.5t^{-2}[/tex]

Acceleration at t= 2 s

[tex]a=-0.5\times 2^{-2}[/tex]

[tex]a= -2\ m/s^2[/tex]

Acceleration at t= 5 s

[tex]a=-0.5\times 5^{-2}[/tex]

[tex]a=-12.5\ m/s^2[/tex]

We know that

[tex]v=\dfrac{dx}{dt}[/tex]

[tex]dx=\left(2+\dfrac{1}{4t}\right)dt[/tex]

Position at t= 2 s:

[tex]\int_{0}^{x}dx=\int_{1}^{2} \left(2+0.25\dfrac{1}{t}\right)dt[/tex]

[tex]x=\left [2t+0.25\ lnt \right ]_{1}^{2}[/tex]

x=2+0.25 ln2

x=2.17 m

Position at t= 5 s:

[tex]\int_{0}^{x}dx=\int_{1}^{5} \left(2+0.25\dfrac{1}{t}\right)dt[/tex]

[tex]x=\left [2t+0.25\ lnt \right ]_{1}^{5}[/tex]

x=8+0.25 ln5

x=8.4 m