Answer:
Step-by-step explanation:
[tex]y" + 8y' = 0[/tex] is the given second order differential equation.
Initial conditions are [tex]y(0) = -3, y'(0) = -4[/tex]
Take Laplace for the DE we get
[tex]L(y")+8L(y')=0\\s^2Y(s)-sy(0)-y'(0) +8(sY(s)-y(0) )=0\\Y(s) (s^2+8s) +3s+4+24=0\\[/tex]
[tex]Y(s)(s^2+8s) = -3s-28\\Y(s) = \frac{-3s-28}{s^2+8s} [/tex]
Right side = [tex]\frac{-7}{2s} +\frac{1}{2(s+8)}[/tex]
Now take inverse laplace
[tex]y(t) = \frac{-7}{2} +\frac{1}{2} e^{-8t}[/tex]