Calculate the density of the air at the top of Mt Everest given the pressure is 278 hPa and the temperature is-43.2°C (you may ignore the effect of water vapour on density for this problem).

Respuesta :

Answer:

density of air at the top of Mt Everest is [tex]\rho = 0.418 kg/m^3[/tex]

Explanation:

using ideal gas equation

   P V = n R T...........(1)

  molecular weight of gas

    n = [tex]\dfrac{m}{M}[/tex]

volume  V = [tex]\dfrac{m}{\rho}[/tex]

therefore from equation (1)

[tex]P(\dfrac{m}{\rho})=\dfrac{m}{M}RT[/tex]

[tex]\rho = \dfrac{PM}{RT}[/tex]

[tex]\rho = \dfrac{278\times 10^2\times 28.8\times 10^{-3} kg/mol}{8.314J/mol.K \ (273-43.2)K}[/tex]

[tex]\rho = 0.418 kg/m^3[/tex]

hence, density of air at the top of Mt Everest is [tex]\rho = 0.418 kg/m^3[/tex]