A heat engines is operating on a Carnot cycle and has a thermal efficiency of 55 percent. The waste heat from this engine is rejected to a nearby lake at 15°C at a rate of 800 kJ/min. Determine: (a) The power output of the engine, and (b)The temperature of the source.

Respuesta :

Answer:

a) P = 1776.97 kJ/min

b) Source temperature, T = 640 K

Given:

[tex]\eta = 55%[/tex]

T = [tex]15^{\circ} = 288 K[/tex]

Q' = 800 kJ/min

Solution:

Refer to the given fig.:

a) We first calculate the value of Q from the eqn:

[tex]\eta = 1 -\frac{Q'}{Q}[/tex]

[tex]0.55 = 1 -\frac{800\times 1000}{Q}[/tex]

Solving for Q, we get:

0.55 Q = Q - 800000

Q = 1777.778 kJ/min

Now,

Output Work, W = Q - Q' = 1777.778 - 800 = 1776.97 kJ/min = power output, P

b) Temperature of source, T':

We know that:

T ∝ Q

Therefore,

[tex]\frac{T}{T'} = \frac{Q}{Q'}[/tex]

[tex]\frac{T}{288} = \frac{1777.78\times 1000}{800}[/tex]

T = 640 K

Ver imagen ConcepcionPetillo
Lanuel

The power output of the engine is equal to 977.78 kJ/min.

Given the following data:

Thermal efficiency = 55 percent.

Temperature = 15°C to K = [tex]15+273[/tex] = 288 K.

Rate of rejection = 800 kJ/min.

How to determine the power output.

First of all, we would calculate the quantity of heat input into the engine. Mathematically, the thermal efficiency of an engine is given by this formula:

[tex]\eta = 1-\frac{Q_{out}}{Q_{in}} \\\\0.55 = 1-\frac{800 \times 10^3}{Q_{in}} \\\\0.55 Q_{in} = Q_{in} - 800000\\\\Q_{in}-0.55Q_{in}=800000\\\\0.45Q_{in}=800000\\\\Q_{in}=\frac{800000}{0.45} \\\\[/tex]

Heat input = 1777.78 kJ/min.

For the power output, we have:

[tex]W=Q_{in}-Q_{out}\\\\W=1777.78-800[/tex]

W = 977.78 kJ/min.

How to calculate the temperature of the source.

[tex]T\;\alpha \;Q\\\\\frac{T_i}{T_o} =\frac{Q_{in}}{Q_{out}} \\\\\frac{T_i}{288} =\frac{1777.78 }{800} \\\\800T_i=1777.78\times 288\\\\800T_i=512000.64\\\\T_i=\frac{512000.64}{800}[/tex]

Ti = 640.0 Kelvin.

Read more on thermal efficiency here: https://brainly.com/question/13577244