A spherical balloon centered at (2,1,2) starts at 1 cm in diameter and begins growing.The sphere is being inflated at a constant rate of2π3cm3/sec. How much time passes beforethe balloon touches the unit sphere?3

Respuesta :

Answer:

[tex]\frac{1}{12\pi^{2}  }[/tex] seconds pass

Step-by-step explanation:

V=[tex]\frac{4}{3}\pi r^{3} = \frac{4}{3}\pi   (\frac{1}{2} )^{3}=\frac{4}{3}\pi   \frac{1}{8}=\frac{1}{6}\pi cm^{3}[/tex]

(Volume of the D=1 cm sphere)

Now we have to find out the time needed to reach that volume at the filling rate of [tex]2\pi ^{3} cm^{3} /s[/tex]

So

[tex]\frac{2\pi^{3}  }{1 sec} =\frac{\frac{\pi }{6} }{x}[/tex]

x=[tex]\frac{\frac{\pi }{6} }{2\pi^{3}  } =\frac{1}{12\pi^{2} }sec[/tex]