Determine the wavelength of a monochromatic beam of light that impinges on a double slit with a slit separation of 2.80 mm. Bright fringes are produced on a screen 1.20 m from the double slit. The brights are separated by .024m.

Respuesta :

Answer:

[tex]\lambda=5.60\times 10^{-5}\ m[/tex]

Explanation:

For constructive interference, the expression is:

[tex]d\times sin\theta=m\times \lambda[/tex]

Where, m = 1, 2, .....

d is the distance between the slits.

The formula can be written as:

[tex]sin\theta=\frac {\lambda}{d}\times m[/tex] ....1

The location of the bright fringe is determined by :

[tex]y=L\times tan\theta[/tex]

Where, L is the distance between the slit and the screen.

For small angle , [tex]sin\theta=tan\theta[/tex]

So,  

Formula becomes:

[tex]y=L\times sin\theta[/tex]

Using 1, we get:

[tex]y=L\times \frac {\lambda}{d}\times m[/tex]

For two fringes:

The formula is:

[tex]\Delta y=L\times \frac {\lambda}{d}\times \Delta m[/tex]

For first and second bright fringe,  

[tex]\Delta m=1[/tex]

Given that:

[tex]\Delta y=0.024\ m[/tex]

d = 2.80 mm

L = 1.20 m  

Also,  

1 mm = 10⁻³ m

d = 2.80×10⁻³ m

Applying in the formula,  

[tex]0.024=1.20\times \frac {\lambda}{2.80\times 10^{-3}}\times 1[/tex]

[tex]\lambda=5.60\times 10^{-5}\ m[/tex]