A chemist wants to find Kc for the following reaction at 751 K: 2NH3(g) + 3 I2 (g) LaTeX: \Longleftrightarrow ⟺ 6HI(g) + N2(g) Kc = Use the following data at 751 K to find the unknown Kc: (1) N2(g) + 3 H2(g) LaTeX: \Longleftrightarrow ⟺ 2 NH3(g) Kc1 = 0.282 (2) H2(g) + I2(g) LaTeX: \Longleftrightarrow ⟺ 2 HI(g) Kc2 = 41 Enter to 0 decimal places.

Respuesta :

Answer: The equilibrium constant for the total reaction is [tex]4.09\times 10^{-6}[/tex]

Explanation:

We are given:

[tex]K_{c_1}=0.282\\\\K_{c_2}=41[/tex]

We are given two intermediate equations:

Equation 1: [tex]N_2(g)+3H_2(g)\rightleftharpoons 2NH_3(g);K_{c_1}=0.282[/tex]

The expression of [tex]K_{c_1}[/tex] for the above equation is:

[tex]K_{c_1}=\frac{[NH_3]^2}{[N_2][H_2]^3}[/tex]

[tex]0.282=\frac{[NH_3]^2}{[N_2][H_2]^3}[/tex]        .......(1)

Equation 2: [tex]H_2(g)+I_2(g)\rightleftharpoons 2HI(g);K_{c_2}=41[/tex]

The expression of [tex]K_{c_2}[/tex] for the above equation is:

[tex]K_{c_2}=\frac{[HI]^2}{[H_2][I_2]}[/tex]

[tex]41=\frac{[HI]^2}{[H_2][I_2]}[/tex]       ......(2)

Cubing both the sides of equation 2, because we need 3 moles of HI in the main expression if equilibrium constant.

[tex](41)^3=\frac{[HI]^6}{[H_2]^3[I_2]^3}[/tex]

Now, dividing expression 1 by expression 2, we get:

[tex]\frac{K_{c_1}}{K_{c_2}}=\left(\frac{\frac{[NH_3]^2}{[N_2][H_2]^3}}{\frac{[HI]^6}{[H_2]^3[l_2]^3}}\right)\\\\\\\frac{0.282}{68921}=\frac{[NH_3]^2[I_2]^3}{[N_2][HI]^6}[/tex]

[tex]\frac{[NH_3]^2[I_2]^3}{[N_2][HI]^6}=4.09\times 10^{-6}[/tex]

The above expression is the expression for equilibrium constant of the total equation, which is:

[tex]2NH_3(g)+3I_2(g)\rightleftharpoons 6HI(g)+N_2;K_c[/tex]

Hence, the equilibrium constant for the total reaction is [tex]4.09\times 10^{-6}[/tex]