Answer:
Part a)
[tex]E = 39.7 N/C[/tex]
Part b)
[tex]v_f = 1.10\times 10^4 m/s[/tex]
Explanation:
Part a)
Proton is released from one plate and strike at other plate in time
[tex]t = 2.90 \times 10^{-6} s[/tex]
[tex]d = 1.60 cm[/tex]
now we will have
[tex]d = \frac{1}{2}at^2[/tex]
[tex]0.0160 = \frac{1}{2}a(2.90 \times 10^{-6})^2[/tex]
[tex]a = 3.8 \times 10^9 m/s^2[/tex]
now we know that
[tex]a = \frac{qE}{m}[/tex]
[tex]3.8 \times 10^9 = \frac{(1.6 \times 10^{-19})E}{(1.67 \times 10^{-27})}[/tex]
[tex]E = 39.7 N/C[/tex]
Part b)
Speed of the proton when it strike the other plate can be calculated by kinematics equations
[tex]v_f^2 - v_i^2 = 2ad[/tex]
[tex]v_f^2 - 0 = 2(3.8 \times 10^9)(0.0160)[/tex]
[tex]v_f = 1.10\times 10^4 m/s[/tex]