Respuesta :

Explanation:

[tex]PbBr_{2}[/tex] will dissociate into ions as follows.

         [tex]PbBr_{2}(s) \rightleftharpoons Pb^{2+}(aq) + 2Br^{-}(aq)[/tex]

Hence, [tex]K_{sp}[/tex] for this reaction will be as follows.

                   [tex]K_{sp} = [Pb^{2+}][Br^{-}]^{2}[/tex]

We take x as the molar solubility of [tex]PbBr_{2}[/tex] when we dissolve x moles of solution per liter.

Hence, ionic molarities in the saturated solution will be as follows.

               [tex][Pb^{2+}][/tex] = [tex][Pb^{2+}]_{o}[/tex] + x

               [tex][Br^{-}]^{2}[/tex] = [tex][Br^{-}]_{o}[/tex] + 2x

So, equilibrium solubility expression will be as follows.

            [tex]K_{sp}[/tex] = [tex]([Pb^{2+}]_{o} + x)([Br^{-}]_{o} + 2x)^{2}[/tex]

Each sodium bromide molecule is giving one bromide ion to the solution. Therefore, one solution contains [tex][Br^{-}]_{o}[/tex] = 0.10 and there will be no lead ions. So, [tex][Pb^{2+}]_{o}[/tex] = 0

So, [tex][Br^{-}]_{o} + 2x[/tex] will approximately equals to [tex][Br^{-}]_{o}[/tex].

Hence, [tex]K_{sp} = x[Br^{-}]^{2}_{o}[/tex]

            [tex]4.67 \times 10^{-6} = x \times (0.10)^{2}[/tex]

                        x = [tex]4.67 \times 10^{-4}[/tex] M

Thus, we can conclude that molar solubility of [tex]PbBr_{2}[/tex] is [tex]4.67 \times 10^{-4}[/tex] M.

Answer:

Molar solubility of [Pb]^{2+}][Br^-]^2[/tex] = [tex]4.67\times 10^{-4}\ M[/tex]

Explanation:

[tex]PbBr_2 \leftrightharpoons Pb^{2+} + 2Br^-[/tex]

[tex]Ksp = 4.76 \times 10^{-6}[/tex]

Let the molar solubility of [tex]PbBr_2[/tex] be x

                   [tex]PbBr_2 \leftrightharpoons Pb^{2+} + 2Br^-[/tex]

At equi.                        x     2x

[tex][Pb]^{2+}[/tex] = x

[tex][Br]^{-}[/tex] = 2x

In the presence of 0.10 M NaBr

[tex][Br]^{-}[/tex] = 2x + 0.10

[tex]Ksp = [Pb]^{2+}][Br^-]^2[/tex]

[tex]4.67 \times 10^{-6} = x \times (2x + 0.10)^2[/tex]

As [tex]PbBr_2[/tex] is weakly soluble, so 2x<<0.1.

2x can be neglected as compared to 0.1

[tex]4.67 \times 10^{-6} = x \times (0.10)^2[/tex]

[tex]x=\frac{4.67 \times 10^{-6}}{(0.10)^2} = 4.67\times 10^{-4}\ M[/tex]