Answer:
Explanation:
given,
tuning fork vibration = 508 Hz
accelerates = 9.80 m/s²
speed of sound = 343 m/s
observed frequency = 490 Hz
[tex]f_s = f(\dfrac{v}{v-(-v_s)})[/tex]
[tex]f_s = f(\dfrac{v}{v+v_s})[/tex]
[tex]v_s = v[\dfrac{f_s}{f_o}-1][/tex]
[tex]= 343[\dfrac{508}{490}-1][/tex]
[tex]v_s=12.6 m/s[/tex]
distance the tunning fork has fallen
[tex]y_1=\dfrac{v^2}{2a_y}[/tex]
[tex]=\dfrac{12.6^2}{2\times 9.8}[/tex]
=8.1 m
now, time required for the observed will be
[tex]t = \dfrac{8.1}{343} = 0.023 s[/tex]
now, for the distance calculation
[tex]y_2 = u\ t + \dfrac{1}{2}at^2[/tex]
[tex]= 12.6\times 0.023 +\dfrac{1}{2}\times 9.8 \times 0.023^2[/tex]
=0.293 m
total distance
= 8.1 + 0.293 = 8.392 m