Consider the equation and the relation “(x, y) R (0, 2)”, where R is read as “has distance 1 of”. For example, “(0, 3) R (0, 2)”, that is, “(0, 3) has distance 1 of (0, 2)”. This relation can also be read as “the point (x, y) is on the circle of radius 1 with center (0, 2)”. In other words: “(x, y) satisfies this equation , if and only if, (x, y) R (0, 2)”. Does this equation determine a relation between x and y? Can the variable x can be seen as a function of y, like x=g(y)? Can the variable y be expressed as a function of x, like y= h(x)? If these are possible, then what will be the domains for these two functions? What are the graphs of these two functions? Are there points of the coordinate axes that relate to (0, 2) by means of R?

Respuesta :

Answer:

The equation determine a relation between x and y

x = ± [tex]\sqrt{1-(y-2)^{2}}[/tex]

y = ± [tex]\sqrt{1-x^{2}}+2[/tex]

The domain is 1 ≤ y ≤ 3

The domain is -1 ≤ x ≤ 1

The graphs of these two function are half circle with center (0 , 2)

All of the points on the circle that have distance 1 from point (0 , 2)

Step-by-step explanation:

* Lets explain how to solve the problem

- The equation x² + (y - 2)² and the relation "(x , y) R (0, 2)", where

 R is read as "has distance 1 of"

- This relation can also be read as “the point (x, y) is on the circle

 of radius 1 with center (0, 2)”

- “(x, y) satisfies this equation , if and only if, (x, y) R (0, 2)”

* Lets solve the problem

- The equation of a circle of center (h , k) and radius r is

  (x - h)² + (y - k)² = r²

∵ The center of the circle is (0 , 2)

∴ h = 0 and k = 2

∵ The radius is 1

∴ r = 1

∴ The equation is ⇒  (x - 0)² + (y - 2)² = 1²

∴ The equation is ⇒ x² + (y - 2)² = 1

∵ A circle represents the graph of a relation

The equation determine a relation between x and y

* Lets prove that x=g(y)

- To do that find x in terms of y by separate x in side and all other

  in the other side

∵ x² + (y - 2)² = 1

- Subtract (y - 2)² from both sides

∴ x² = 1 - (y - 2)²

- Take square root for both sides

∴ x = ± [tex]\sqrt{1-(y-2)^{2}}[/tex]

x = g(y)

* Lets prove that y=h(x)

- To do that find y in terms of x by separate y in side and all other

  in the other side

∵ x² + (y - 2)² = 1

- Subtract x² from both sides

∴ (y - 2)² = 1 - x²

- Take square root for both sides

∴ y - 2 = ± [tex]\sqrt{1-x^{2}}[/tex]

- Add 2 for both sides

∴ y = ± [tex]\sqrt{1-x^{2}}+2[/tex]

y = h(x)

- In the function x = ± [tex]\sqrt{1-(y-2)^{2}}[/tex]

∵ [tex]\sqrt{1-(y-2)^{2}}[/tex] ≥ 0

∴ 1 - (y - 2)² ≥ 0

- Add (y - 2)² to both sides

∴ 1 ≥ (y - 2)²

- Take √ for both sides

∴ 1 ≥ y - 2 ≥ -1

- Add 2 for both sides

∴ 3 ≥ y ≥ 1

The domain is 1 ≤ y ≤ 3

- In the function y = ± [tex]\sqrt{1-x^{2}}+2[/tex]

∵ [tex]\sqrt{1-x^{2}}[/tex] ≥ 0

∴ 1 - x² ≥ 0

- Add x² for both sides

∴ 1 ≥ x²

- Take √ for both sides

∴ 1 ≥ x ≥ -1

The domain is -1 ≤ x ≤ 1

* The graphs of these two function are half circle with center (0 , 2)

* All of the points on the circle that have distance 1 from point (0 , 2)