Photoelectrons from a material with a binding energy of 2.71 eV are ejected by 450 nm photons. Once ejected, how long (in s) does it take these electrons to travel 2.60 cm to a detection device?

Respuesta :

Answer:

The time is [tex]1.91\times10^{-7}\ sec[/tex]

Explanation:

Given that,

Energy = 2.71 eV

Length = 450 nm

Distance = 2.60 cm

We need to calculate the speed of photon

Using formula of photoelectric emission

[tex]\phi+K.E=\dfrac{hc}{l}[/tex]

[tex]\dfrac{1}{2}mv^2=\dfrac{hc}{l}-\phi[/tex]

[tex]v^2=\dfrac{2(\dfrac{hc}{l}-\phi)}{m}[/tex]

Where, K.E = kinetic energy

h = Planck constant

Put the value into the formula

[tex]v^2=\dfrac{2(\dfrac{6.63\times10^{-34}\times3\times10^{8}}{450\times10^{-9}}-2.71\times1.6\times10^{-19})}{9.1\times10^{-31}}[/tex]

[tex]v=\sqrt{1.846\times10^{10}}[/tex]

[tex]v=1.358\times10^{5}\ m/s[/tex]

We need to calculate the time

Using formula of distance

[tex]v = \dfrac{d}{t}[/tex]

Put the value into the formula

[tex]t = \dfrac{d}{v}[/tex]

[tex]t=\dfrac{2.60\times10^{-2}}{1.358\times10^{5}}[/tex]

[tex]t=1.91\times10^{-7}\ sec[/tex]

Hence, The time is [tex]1.91\times10^{-7}\ sec[/tex]