Answer:
The time is [tex]1.91\times10^{-7}\ sec[/tex]
Explanation:
Given that,
Energy = 2.71 eV
Length = 450 nm
Distance = 2.60 cm
We need to calculate the speed of photon
Using formula of photoelectric emission
[tex]\phi+K.E=\dfrac{hc}{l}[/tex]
[tex]\dfrac{1}{2}mv^2=\dfrac{hc}{l}-\phi[/tex]
[tex]v^2=\dfrac{2(\dfrac{hc}{l}-\phi)}{m}[/tex]
Where, K.E = kinetic energy
h = Planck constant
Put the value into the formula
[tex]v^2=\dfrac{2(\dfrac{6.63\times10^{-34}\times3\times10^{8}}{450\times10^{-9}}-2.71\times1.6\times10^{-19})}{9.1\times10^{-31}}[/tex]
[tex]v=\sqrt{1.846\times10^{10}}[/tex]
[tex]v=1.358\times10^{5}\ m/s[/tex]
We need to calculate the time
Using formula of distance
[tex]v = \dfrac{d}{t}[/tex]
Put the value into the formula
[tex]t = \dfrac{d}{v}[/tex]
[tex]t=\dfrac{2.60\times10^{-2}}{1.358\times10^{5}}[/tex]
[tex]t=1.91\times10^{-7}\ sec[/tex]
Hence, The time is [tex]1.91\times10^{-7}\ sec[/tex]