Answer:
[tex]15.18\times 10^{-9} m[/tex]
Explanation:
Radius of the path of electron which is moving perpendicular to magnetic field is defined as,
[tex]r=\frac{mv}{qB}[/tex]
Here, m is the mass of electron, v is the velocity of electron, q is the charge on electron, and B is the magnetic field.
Given that, the velocity of electron is, [tex]v=4000m/s[/tex].
And the magnetic field is [tex]B=1.5T[/tex].
And the mass of electron is, [tex]m=9.11\times10^{-31}kg[/tex]
And the charge on electron is, [tex]q=1.6\times 10^{-19}C[/tex]
Put all these values in radius equation,
[tex]r=\frac{9.11\times10^{-31}kg\times 4000m/s }{1.6\times 10^{-19}C\times 1.5T}\\r=15.18\times 10^{-9} m[/tex]
Therefore, the path radius of a moving electron is [tex]15.18\times 10^{-9} m[/tex]