How much work is required to accelerate a proton from rest up to a speed of 0.993 c? Express your answer with the appropriate units. What would be the momentum of this proton? Express your answer with the appropriate units.

Respuesta :

Answer:

(a). The work done is 7001 MeV.

(b). The momentum of this proton is [tex]4.20\times10^{8}\ kg-m/s[/tex].

Explanation:

Given that,

Speed = 0.993 c

We need to calculate the work done

Using work energy theorem

The work done is equal to the kinetic energy relative to the proton

[tex]W=K.E[/tex]

[tex]W=\dfrac{m_{p}c^2}{\sqrt{1-\dfrac{v^2}{c^2}}}-m_{p}c^2[/tex]

Put the value into the formula

[tex]W=\dfrac{1.67\times10^{-27}\times(3\times10^{8})^2}{\sqrt{1-(\dfrac{0.993c}{c})^2}}-1.67\times10^{-27}\times(3\times10^{8})^2[/tex]

[tex]W=\dfrac{1.67\times10^{-27}\times(3\times10^{8})^2}{\sqrt{1-(0.993)^2}}-1.67\times10^{-27}\times(3\times10^{8})^2[/tex]

[tex]W=1.122\times10^{-9}\ J[/tex]

[tex]W=7001\ MeV[/tex]

(b). We need to calculate  the momentum of this proton

Using formula of momentum

[tex]p=\dfrac{m_{0}v}{\sqrt{1-\dfrac{v^2}{c^2}}}[/tex]

Put the value into the formula

[tex]p=\dfrac{1.67\times10^{-27}\times0.993c}{\sqrt{1-(\dfrac{0.993c}{c})^2}}[/tex]

[tex]p=\dfrac{1.67\times10^{-27}\times0.993c}{\sqrt{1-(0.993)^2}}[/tex]

[tex]p=1.404\times10^{-26}c[/tex]

[tex]p=4.20\times10^{8}\ kg-m/s[/tex]

Hence, (a). The work done is 7001 MeV.

(b). The momentum of this proton is [tex]4.20\times10^{8}\ kg-m/s[/tex].