contestada

A photon is emitted when a hydrogen atom undergoes a transition from the n = 8 state to the n = 4 state. Calculate values for the following. (a) the wavelength nm (b) the frequency Hz (c) the energy of the emitted photon eV

Respuesta :

Answer:

a) λ=2 μm

b)[tex]f= 1.5 \times 10^{14}[/tex]

c)E=0.61 eV

Explanation:

Given that

Hydrogen atom undergoes from n=8 to n= 4 state.

a)To find wavelength

We know that

[tex]\dfrac{1}{\lambda}=R_H\left(\dfrac{1}{n_2^2}-\dfrac{1}{n_1^2}\right)[/tex]

Where

[tex]R_H=1.09\times 10^7\ m^{-1}[/tex]

Now by putting the values

[tex]\dfrac{1}{\lambda}=R_H\left(\dfrac{1}{n_2^2}-\dfrac{1}{n_1^2}\right)[/tex]

[tex]\dfrac{1}{\lambda}=1.09\times 10^7\left(\dfrac{1}{4^2}-\dfrac{1}{8^2}\right)[/tex]

[tex]\dfrac{1}{\lambda}=510937.5[/tex]

 λ=2 μm

b)For frequency

C= f x λ

[tex]f=\dfrac{3\times 10^8}{2\times 10^{-6}}\ Hz[/tex]

[tex]f= 1.5 \times 10^{14}[/tex]

c)To find energy

E= hf

[tex]E=6.6\times 10^{-34}\times1.5 \times 10^{14}\ J[/tex]

[tex]E=9.9\times 10^{-20}\ J[/tex]

[tex]E=\dfrac{9.9\times 10^{-20}}{1.6\times 10^{-19}}\ eV[/tex]

E=0.61 eV

Otras preguntas