Answer:
a) λ=2 μm
b)[tex]f= 1.5 \times 10^{14}[/tex]
c)E=0.61 eV
Explanation:
Given that
Hydrogen atom undergoes from n=8 to n= 4 state.
a)To find wavelength
We know that
[tex]\dfrac{1}{\lambda}=R_H\left(\dfrac{1}{n_2^2}-\dfrac{1}{n_1^2}\right)[/tex]
Where
[tex]R_H=1.09\times 10^7\ m^{-1}[/tex]
Now by putting the values
[tex]\dfrac{1}{\lambda}=R_H\left(\dfrac{1}{n_2^2}-\dfrac{1}{n_1^2}\right)[/tex]
[tex]\dfrac{1}{\lambda}=1.09\times 10^7\left(\dfrac{1}{4^2}-\dfrac{1}{8^2}\right)[/tex]
[tex]\dfrac{1}{\lambda}=510937.5[/tex]
λ=2 μm
b)For frequency
C= f x λ
[tex]f=\dfrac{3\times 10^8}{2\times 10^{-6}}\ Hz[/tex]
[tex]f= 1.5 \times 10^{14}[/tex]
c)To find energy
E= hf
[tex]E=6.6\times 10^{-34}\times1.5 \times 10^{14}\ J[/tex]
[tex]E=9.9\times 10^{-20}\ J[/tex]
[tex]E=\dfrac{9.9\times 10^{-20}}{1.6\times 10^{-19}}\ eV[/tex]
E=0.61 eV