A laser used in eye surgery emits a 2.20-mJ pulse in 1.00 ns, focused to a spot 45.0 µm in diameter on the retina. (a) Find (in SI units) the power per unit area at the retina. (This quantity is called the irradiance.)
W/m^2
(b) What energy is delivered per pulse to an area of molecular size (say, a circular area 0.400 nm in diameter)?

Respuesta :

Answer:

(a). The power per unit area at the retina is [tex]13.8\times10^{14}\ W/m^2[/tex].

(b). The energy delivered per pulse to an area of molecular size is [tex]0.174\times10^{-12}\ J[/tex]

Explanation:

Given that,

Emitted energy = 2.20 mJ

Time t = 1.00 ns

Diameter D= 45.0 μm

Diameter of circular area d= 0.400 nm

(a). We need to calculate the power per unit area at the retina

Using formula of power

[tex]Power\ per\ area = \dfrac{E}{t\times A}[/tex]

[tex]Power\ per\ area = \dfrac{E}{t\times \pi r^2}[/tex]

Put the value into the formula

[tex]Power\ per\ area = \dfrac{2.20\times10^{-3}}{1.00\times10^{-9}\times \pi (22.5\times10^{-6})^2}[/tex]

[tex]Power\ per\ area = 13.8\times10^{14}\ W/m^2[/tex]

(b). We need to calculate the energy is delivered per pulse to an area of molecular size

Using formula of energy

[tex]E'=E\times(\dfrac{d}{D})^2[/tex]

Put the value in to the formula

[tex]E'=2.20\times10^{-3}\times(\dfrac{0.400\times10^{-9}}{45.0\times10^{-6}})^2[/tex]

[tex]E'=1.738\times10^{-13}\ J[/tex]

[tex]E'=0.174\times10^{-12}\ J[/tex]

Hence, (a). The power per unit area at the retina is [tex]13.8\times10^{14}\ W/m^2[/tex].

(b). The energy delivered per pulse to an area of molecular size is [tex]0.174\times10^{-12}\ J[/tex]