Respuesta :

Answer:

Step-by-step explanation:

We are given that [tex]\frac{Z}{20Z}[/tex]

We have to find the invertible elements of [tex]\frac{Z}{20Z}[/tex] along with their inverses under multiplication.

We know that

[tex]\frac{Z}{20Z}^*\approx U(20)[/tex]

U(20)={1,3,7,9,11,13,17,19}

Operation used

[tex]\frac{a\times b}{20}=remainder[/tex]

Identity element=1

Inverse condition  :[tex]a\times a^{-1}=1[/tex]

Inverse of 1=1

Inverse of 3

[tex]3x=1mod (20)[/tex]

[tex]3\times 7=1mod(20)[/tex]

[tex]\frac{21-1}{20}=\frac{20}{20}=0 [/tex] ([tex]a=b mod n\implies \frac{a-b}{n}[/tex])

Inverse of 3=7

Inverse of 7=3

Inverse of 9

[tex]9x=1mod (20)[/tex]

Inverse of 9 is 9 .

Inverse of 11

11 is also self inverse element.

[tex] \frac{13\times 17}{20}=1[/tex]

Where 1 is remainder

Hence inverse of 13 is 17 and inverse of 17 is 13.

19 is also self inverse element.

Therefore,

[tex]1^{-1}=1[/tex]

[tex]3^{-1}=7[/tex]

[tex]7^{-1}=3[/tex]

[tex]11^{-1}=11[/tex]

[tex]13^{-1}=17[/tex]

[tex]17^{-1}=13[/tex]

[tex]19^{-1}=19[/tex]