Answer:1000 N
Step-by-step explanation:
Given
Christiane is exerting a force of 1200 N at an angle of [tex]30^{\circ}[/tex] to the horizontal
Hayley exerting a force of 200 N at an angle of [tex]210^{\circ}[/tex] to the horizontal
Resolving Forces in horizontal and vertical direction
[tex]R_x=1200cos\left ( 30\right )+200cos\left ( 210\right )+Fcos\theta [/tex]
[tex]R_y=1200sin\left ( 30\right )+200sin\left ( 210\right )+Fsin\theta [/tex]
For Ring to remains in equilibrium
[tex]R_x & R_y =0[/tex]
[tex]Fcos\theta =-\left ( 1200cos\left ( 30\right )+200cos\left ( 210\right )\right )[/tex]---1
[tex]Fsin\theta =-\left ( 1200sin\left ( 30\right )+200sin\left ( 210\right )\right )[/tex]---2
Divide (1) & (2)
[tex]tan\left ( \theta \right )=\frac{\left ( 1200sin\left ( 30\right )+200sin\left ( 210\right )\right )}{\left ( 1200cos\left ( 30\right )+200cos\left ( 210\right )\right )}[/tex]
[tex]tan\left ( \theta \right )=\frac{1}{\sqrt{3}}[/tex]
therefore [tex]\theta [/tex]is 30 or 210
but 30 is not possible therefore [tex]\theta [/tex] is 210
and magnitude of force will be
[tex]Fcos210=-\left ( 1200cos\left ( 30\right )+200cos\left ( 210\right )\right )[/tex]
F=1000 N