Answer:
[tex]R\circ S=\{(1,x),(1,y),(4,x),(4,y),(5,x),(2,z),(3,z),(3,2)\}[/tex]
Step-by-step explanation:
Given set of ordered pairs are
S = {(1, a), (4, a),(5,6), (2, c), (3,c), (3, d)}
R = {(a,x), (a, y), (6, x), (c, z), (d, 2)}
We need to find the composition [tex]R\circ S[/tex].
If f(x) and g(x) are two functions, then
[tex](f\circ g)(x)=f(g(x))[/tex]
Elements S [tex]R\circ S[/tex]
1 a x
1 a y
4 a x
4 a y
5 6 x
2 c z
3 c z
3 d 2
The composition [tex]R\circ S[/tex] is defined as
[tex]R\circ S=\{(1,x),(1,y),(4,x),(4,y),(5,x),(2,z),(3,z),(3,2)\}[/tex]
Therefore [tex]R\circ S=\{(1,x),(1,y),(4,x),(4,y),(5,x),(2,z),(3,z),(3,2)\}[/tex].