Answer:
a.0.0078125
b. 0.1640625
c. 0.0078125
d. 0.0078125
Step-by-step explanation:
To solve this question we can use the binomial probability function:
[tex]Prob(k\,successes\,in\,n\,trials)=\left(\begin{array}{c}n&k\end{array}\right) p^k q^{(n-k)}\\[/tex]
where
In this case case p=q
Then
(a) [tex]Prob(B,B,B,B,B,B,B)=1\times0.5^7[/tex]
(b) [tex]Prob(5\,boys\,in\,7\,children)=\left(\begin{array}{c}7&5\end{array}\right)0.5^7[/tex]
(c)[tex]Prob(G\,last\,and\,6\,boys)=Prob(B)^6Prob(G)=0.5^7[/tex]
(d) [tex]Prob(G\,first\,and\,6\,boys)=Prob(G)Prob(B)^6=0.5^7[/tex]
(a), (c) and (d) are equal as a result of equal probability of giving birth to a boy or a girl. (b) is different because it takes into account the different orders that births can occur