Respuesta :

Answer:

[tex]x=\pm\sqrt{77n+53}[/tex]

Step-by-step explanation:

We have been given an equivalence equation [tex]x^2\equiv 53\text{ (mod } 77)[/tex]. We are asked to find all the square root of the given equivalence equation.

Upon converting our given equivalence equation into an equation, we will get:

[tex]x^2-53=77n[/tex]

Add 53 on both sides:

[tex]x^2-53+53=77n+53[/tex]

[tex]x^2=77n+53[/tex]

Take square root of both sides:

[tex]x=\pm\sqrt{77n+53}[/tex]

Therefore, the square root for our given equation would be [tex]x=\pm\sqrt{77n+53}[/tex].