Answer:
[tex]\large\boxed{x>23\to x\in(23,\ \infty)}[/tex]
Step-by-step explanation:
[tex]3+\dfrac{1}{2}(3-x)<-7\qquad\text{subtract 3 from both sides}\\\\\dfrac{1}{2}(3-x)<-10\qquad\text{multiply both sides by 2}\\\\2\!\!\!\!\diagup^1\cdot\left(\dfrac{1}{2\!\!\!\!\diagup_1}\right)(3-x)<(2)(-10)\\\\3-x<-20\qquad\text{subtract 3 from both sides}\\\\-x<-23\qquad\text{change the all signs}\\\\x>23[/tex]