Answer:
intensity = [tex]\frac{Io}{15}[/tex]
intensity = [tex]\frac{Io}{30}[/tex]
depth = 333.33 m
Step-by-step explanation:
given data
deep = 10 m
intensity = Io
intensity = Io/3
to find out
intensity of light at 50 m and 100 m and 1/100 of initial intensity remain ?
solution
we know here that intensity is inversely proportional to deep so
intensity = k × [tex]\frac{1}{Deep}[/tex] .................1
here k is constant
so we have given 10 m deep so
[tex]\frac{Io}{3}[/tex] = [tex]\frac{k}{10}[/tex]
so k = Io × [tex]\frac{10}{3}[/tex] ................2
so from equation 1 when 100 m deep and 50 m deep
intensity = k × [tex]\frac{1}{Deep}[/tex]
intensity = Io × [tex]\frac{10}{3}[/tex] × [tex]\frac{1}{50}[/tex]
intensity = [tex]\frac{Io}{15}[/tex]
and
intensity = Io × [tex]\frac{10}{3}[/tex] × [tex]\frac{1}{100}[/tex]
intensity = [tex]\frac{Io}{30}[/tex]
and
at intensity Io/100
intensity = k × [tex]\frac{1}{Deep}[/tex]
[tex]\frac{Io}{100}[/tex] = Io × [tex]\frac{10}{3}[/tex] × [tex]\frac{1}{D}[/tex]
D = 333.33 m
so depth = 333.33 m