Answer:
See explanation
Step-by-step explanation:
There are three possible cases:
1. Point N lies between M and P, then MN + NP = MP. Consider needed difference:
[tex]\dfrac{MN}{NP}-\dfrac{MN}{MP}=\dfrac{MN}{NP}-\dfrac{MN}{MN+NP}=\dfrac{MN(MN+NP)-MN\cdot NP}{NP(MN+NP)}=\\ \\=\dfrac{MN^2+MN\cdot NP-MN\cdot NP}{NP(MN+NP)}=\dfrac{MN^2}{NP(MN+NP)}[/tex]
2. Point N lies to the right from point P, then MP + PN = MN. Consider needed difference:
[tex]\dfrac{MN}{NP}-\dfrac{MN}{MP}=\dfrac{MP+PN}{NP}-\dfrac{MP+PN}{MP}=\dfrac{MP}{NP}+1-1-\dfrac{NP}{MP}=\dfrac{MP^2-NP^2}{NP\cdot MP}[/tex]
3. Point N lies to the left from point M, then NM + MP = NP. Consider needed difference:
[tex]\dfrac{MN}{NP}-\dfrac{MN}{MP}=\dfrac{MN}{MN+MP}-\dfrac{MN}{MP}=\dfrac{MN\cdot MP-MN(MN+MP)}{MP(MN+MP)}=\\ \\=\dfrac{MN\cdot MP-MN^2-MN\cdot MP}{MP(MN+MP)}=\dfrac{-MN^2}{MP(MN+MP)}[/tex]