Respuesta :
Answer:
(-2,0)
Step-by-step explanation:
First , find the midpoint of AB using the coordinates A(-6,-3) and B (10,9) and name it M, then find the midpoint of AM
Formula for midpoint of a segment is
=[tex]=(\frac{x_1+x_2}{2} ,\frac{y_1+y_2}{2} )[/tex]
Given A (-6,-3) = (x₁,y₁) and B (10,9) =(x₂,y₂)
Midpoint , M will be;
[tex]M=\frac{(-6+10)}{2} ,\frac{(-3+9)}{2} \\\\\\M=\frac{4}{2} ,\frac{6}{2} \\\\\\M=(2,3)[/tex]
Now you have point A (-6,-3) and M (2,3) find the midpoint of segment AM which is equal to 1/4 of the way from A to B
Midpoint of AM is given by;
{(-6+2)/2, (-3+3)/2}
{(-4/2),(0/2)}
(-2,0)