Respuesta :

lucic

Answer:

(-2,0)

Step-by-step explanation:

First , find the midpoint of AB using the coordinates A(-6,-3) and B (10,9) and name it M, then find the midpoint of AM

Formula for midpoint of a segment is

=[tex]=(\frac{x_1+x_2}{2} ,\frac{y_1+y_2}{2} )[/tex]

Given A (-6,-3) = (x₁,y₁)   and B (10,9) =(x₂,y₂)

Midpoint , M will be;

[tex]M=\frac{(-6+10)}{2} ,\frac{(-3+9)}{2} \\\\\\M=\frac{4}{2} ,\frac{6}{2} \\\\\\M=(2,3)[/tex]

Now you have point A (-6,-3) and M (2,3) find the midpoint of segment AM which is equal to 1/4 of the way from A to B

Midpoint of AM is given by;

{(-6+2)/2, (-3+3)/2}

{(-4/2),(0/2)}

(-2,0)

Answer:

Step-by-step explanation