Choose a method (factoring. square root property, completing the square, and the quadratic formula) to solve each of the following quadratic equations.
Each method can be used only ONCE

A) 4x2 – 27 = 0

B) 4x2 – 8x – 5 = 0

C) 4x2 – 8x – 12 = 0

D) 4x2 – 9x – 7 = 0

Respuesta :

Answer:

Part A) [tex]x=(+/-)\frac{3\sqrt{3}}{2}[/tex]

Part B) [tex]x=2.5[/tex]  and [tex]x=-0.5[/tex]

Part C) [tex]x=-1[/tex]  and [tex]x=3[/tex]

Part D) [tex]x=\frac{9+\sqrt{193}}{8}[/tex]  and [tex]x=\frac{9-\sqrt{193}}{8}[/tex]

Step-by-step explanation:

Part A) we have

[tex]4x^{2}-27=0[/tex]          

we know that      

The square root property states that if we have an equation with a perfect square on one side and a number on the other side, then we can take the square root of both sides and add a plus or minus sign to the side with the number and solve the equation.

isolate the term that contains the squared variable

[tex]4x^{2}=27[/tex]            

[tex]x^{2} =\frac{27}{4}[/tex]

take the square root of both sides

[tex]x=(+/-)\frac{\sqrt{27}}{2}[/tex]

simplify

[tex]x=(+/-)\frac{3\sqrt{3}}{2}[/tex]

Part B) we have

[tex]4x^{2}-8x-5=0[/tex]    

Using the quadratic equation  

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex] is  

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]4x^{2}-8x-5=0[/tex]  

so

[tex]a=4\\b=-8\\c=-5[/tex]

substitute in the formula

[tex]x=\frac{-(-8)(+/-)\sqrt{-8^{2}-4(4)(-5)}} {2(4)}[/tex]

[tex]x=\frac{8(+/-)\sqrt{144}}{8}[/tex]

[tex]x=\frac{8(+/-)12}{8}[/tex]

[tex]x=\frac{8(+)12}{8}=2.5[/tex]

[tex]x=\frac{8(-)12}{8}=-0.5[/tex]

Part C) we have

[tex]4x^{2}-8x-12=0[/tex]    

Using Factoring  

Simplify the expression first

Divide by 4 both sides

[tex]x^{2}-2x-3=0[/tex]  

Find two numbers a and  b such that

a+b=-2

ab=-3

Solve the system by graphing

The solution is a=1, b=-3  

see the attached figure

so

[tex]4x^{2}-8x-12=4(x-1)(x+3)[/tex]  

The solutions are

[tex]x=1, x=-3[/tex]

Part D) we have

[tex]4x^{2}-9x-7=0[/tex]

Solve by completing the square

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]4x^{2}-9x=7[/tex]

Factor the leading coefficient

[tex]4(x^{2}-\frac{9}{4}x)=7[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side

[tex]4(x^{2}-\frac{9}{4}x+\frac{81}{64})=7+\frac{81}{16}[/tex]

[tex]4(x^{2}-\frac{9}{4}x+\frac{81}{64})=\frac{193}{16}[/tex]

Rewrite as perfect squares

[tex]4(x-\frac{9}{8})^{2}=\frac{193}{16}[/tex]

[tex](x-\frac{9}{8})^{2}=\frac{193}{64}[/tex]

take square root both sides

[tex](x-\frac{9}{8})=(+/-)\frac{\sqrt{193}}{8}[/tex]

[tex]x=\frac{9+\sqrt{193}}{8}[/tex]

[tex]x=\frac{9-\sqrt{193}}{8}[/tex]

Ver imagen calculista