Respuesta :

Answer:

The equations that represent the reflected functions are

[tex]f(x)=5(\frac{1}{5})^{-x}[/tex]

[tex]f(x)=5(5)^{x}[/tex]

Step-by-step explanation:

The correct question in the attached figure

we have the function

[tex]f(x)=5(\frac{1}{5})^{x}[/tex]

we know that

A reflection across the y-axis interchanges positive x-values with negative x-values, swapping x and −x.

therefore

[tex]f(−x) = f(x).[/tex]

The reflection of the given function across the y-axis will be equal to

(Remember interchanges positive x-values with negative  x-values)[tex]f(x)=5(\frac{1}{5})^{-x}[/tex]

An equivalent form will be

[tex]f(x)=5(\frac{1}{5})^{(-1)(x)}=5[(\frac{1}{5})^{-1})]^{x}=5(5)^{x}[/tex]

therefore

The equations that represent the reflected functions are

[tex]f(x)=5(\frac{1}{5})^{-x}[/tex]

[tex]f(x)=5(5)^{x}[/tex]

Ver imagen calculista

C. f(x) = 5(1/5)⁻ˣ ,  D. f(x) = 5(5)ˣ

^

|

|

That is the answer.

Right on the edge final!

I hope this helps!

- sincerelynini