Respuesta :
Answer:
The equations that represent the reflected functions are
[tex]f(x)=5(\frac{1}{5})^{-x}[/tex]
[tex]f(x)=5(5)^{x}[/tex]
Step-by-step explanation:
The correct question in the attached figure
we have the function
[tex]f(x)=5(\frac{1}{5})^{x}[/tex]
we know that
A reflection across the y-axis interchanges positive x-values with negative x-values, swapping x and −x.
therefore
[tex]f(−x) = f(x).[/tex]
The reflection of the given function across the y-axis will be equal to
(Remember interchanges positive x-values with negative x-values)[tex]f(x)=5(\frac{1}{5})^{-x}[/tex]
An equivalent form will be
[tex]f(x)=5(\frac{1}{5})^{(-1)(x)}=5[(\frac{1}{5})^{-1})]^{x}=5(5)^{x}[/tex]
therefore
The equations that represent the reflected functions are
[tex]f(x)=5(\frac{1}{5})^{-x}[/tex]
[tex]f(x)=5(5)^{x}[/tex]

C. f(x) = 5(1/5)⁻ˣ , D. f(x) = 5(5)ˣ
^
|
|
That is the answer.
Right on the edge final!
I hope this helps!
- sincerelynini