let's bear in mind that sin(θ) in this case is positive, that happens only in the I and II Quadrants, where the cosine/adjacent are positive and negative respectively.
[tex]\bf sin(\theta )=\cfrac{\stackrel{opposite}{5}}{\stackrel{hypotenuse}{6}}\qquad \impliedby \textit{let's find the \underline{adjacent side}} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies \pm\sqrt{c^2-b^2}=a \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ \pm\sqrt{6^2-5^2}=a\implies \pm\sqrt{36-25}\implies \pm \sqrt{11}=a \\\\[-0.35em] ~\dotfill[/tex]
[tex]\bf cos(\theta )=\cfrac{\stackrel{adjacent}{\pm\sqrt{11}}}{\stackrel{hypotenuse}{6}} \\\\\\ tan(\theta )=\cfrac{\stackrel{opposite}{5}}{\stackrel{adjacent}{\pm\sqrt{11}}}\implies \stackrel{\textit{and rationalizing the denominator}~\hfill }{tan(\theta )=\pm\cfrac{5}{\sqrt{11}}\cdot \cfrac{\sqrt{11}}{\sqrt{11}}\implies tan(\theta )=\pm\cfrac{5\sqrt{11}}{11}}[/tex]