Respuesta :

Answer:

__________________________________________

    The correct answer is:   " [tex]\frac{2}{3}[/tex] " .

__________________________________________

Note:  Let's assume that this given decimal value  is really:

"0.66666666666666666....."  ;

(non-terminating; but repeating the singing digit, "7" ; yet rounded to:

" 0.66666667 " ;  

then:  " 0.666... "    = [tex]\frac{666}{999}[/tex]  ;

                             

                               =  (666 ÷ 111) / (999 ÷ 111)  ;

                               =  6/9 ;

                              = (6÷3)/(9÷3)  ;

                               =   2/3 ;

                             

                               =   " [tex]\frac{2}{3}[/tex] "

 

                              →  which is our answer.

____________________________________________

 Or:   " 0.6666... "  =  666 ÷ 999 = ?  ;

                        using calculator :

                               =  0.66666667 ;  

        →  which is the "rounded off" number of "0.6666..." ;

                                                                (infinitely repeating) ;

                  →   So 666 ÷ 999 =

                  →   "  [tex]\frac{666}{999}[/tex] " ;

               

                               =  " [tex]\frac{2}{3}[/tex] " ;  

                               →  Either use a "fraction calculator" ;

       or simplify as aforementioned.    

____________________________________________

Hope this answer is helpful to you!

       Best wishes to you in your academic pursuits

              — and within the "Brainly" community!

____________________________________________

Answer:

2/3

Step-by-step explanation:

The correct answer would be 2/3. Since .333333334 is 1/3 since if you divided 1 over 3 it would be .33334. And since 0.6666 is double that you would just add one more number to the numerator!

I hope this helps! Please mark as brainliest! Good luck! :D