Respuesta :

Answer:

Third option: [tex]x=\frac{5}{2}[/tex]

Step-by-step explanation:

The correct exercise is attached.

The equation given is:

[tex]9^{x-1}-2=25[/tex]

 The steps to find the value of "x" are shown below:

1. Add 2 to both sides of the equation:

[tex]9^{x-1}-2+2=25+2\\\\9^{x-1}=27[/tex]

2. Descompose 9 and 27 into their prime factors:

[tex]9=3*3=3^2\\27=3*3*3=3^3[/tex]

3. Substitute them into the equation:

[tex]3^{2(x-1)}=3^3[/tex]

4. Knowing that If [tex]a^n=b^m[/tex], then [tex]n=m[/tex], we get:

[tex]2(x-1)=3[/tex]

5. Apply Distributive property:

[tex]2x-2=3[/tex]

6. Add 2 to both sides:

[tex]2x-2+2=3+2\\\\2x=5[/tex]

7. Divide both sides of the equation by 2:

[tex]\frac{2x}{2}=\frac{5}{2}\\\\x=\frac{5}{2}[/tex]

Ver imagen luisejr77

Answer:

x = [tex]\frac{5}{2}[/tex]

Step-by-step explanation:

this is correct answer on ed-genuity, hope this helps! :)