Respuesta :
You find the eigenvalues of a matrix A by following these steps:
- Compute the matrix [tex]A' = A-\lambda I[/tex], where I is the identity matrix (1s on the diagonal, 0s elsewhere)
- Compute the determinant of A'
- Set the determinant of A' equal to zero and solve for lambda.
So, in this case, we have
[tex]A = \left[\begin{array}{cc}1&-2\\-2&0\end{array}\right] \implies A'=\left[\begin{array}{cc}1&-2\\-2&0\end{array}\right]-\left[\begin{array}{cc}\lambda&0\\0&\lambda\end{array}\right]=\left[\begin{array}{cc}1-\lambda&-2\\-2&-\lambda\end{array}\right][/tex]
The determinant of this matrix is
[tex]\left|\begin{array}{cc}1-\lambda&-2\\-2&-\lambda\end{array}\right| = -\lambda(1-\lambda)-(-2)(-2) = \lambda^2-\lambda-4[/tex]
Finally, we have
[tex]\lambda^2-\lambda-4=0 \iff \lambda = \dfrac{1\pm\sqrt{17}}{2}[/tex]
So, the two eigenvalues are
[tex]\lambda_1 = \dfrac{1+\sqrt{17}}{2},\quad \lambda_2 = \dfrac{1-\sqrt{17}}{2}[/tex]