Answer:
(a) [tex]vo=17.98\frac{m}{s}[/tex]
(b) [tex]\alpha =13.03779 centigrades[/tex]
Explanation:
Let´s use the maximum horizontal distance traveled by a projectile formula:
[tex]Xmax=\frac{v^{2} }{g} *sin(2\alpha )[/tex] (1)
So, we know that the maximum distance reached by the Roadrunner is:
[tex]Xmax=15+1.5[/tex]=16.5m
if we assume that:
[tex]g=9.8\frac{m}{s^{2} }[/tex]
replacing the values in (1)
[tex]vo=\sqrt{\frac{16.5*9.8}{sin(30)} } =17.98\frac{m}{s}[/tex]
Using the maximum horizontal distance traveled by a projectile formula again, let´s calculate the maximum distance reached by the Coyote:
[tex]Xmax=15-0.5[/tex]=14.5m
Assuming
[tex]g=9.8\frac{m}{s^{2} }[/tex]
and replacing in (1)
[tex]sin(2\alpha )=\frac{14.5*9.8}{17.98^{2} } =0.4395564965\\\\arcsin(2\alpha)=arcsin(0.4395564965)\\\\2\alpha =26.07558729\\\\\alpha =13.03779[/tex]centigrades