A 6-ft-tall person walks away from a 10-ft lamppost at a constant rate of 3ft/sec. What is the rate that the tip of the shadow moves away from the pole when the person is 10ft away from the pole?

Respuesta :

Answer:

[tex]\frac{d}{dt} (x+y)=\frac{15}{2} \frac{ft}{s}[/tex]

Step-by-step explanation:

If we see the file attached. The lamppost and the person form a triangle. The hight of the triangles are set by 10 ft from the lamppost and 6 ft from the person.

We also know that the person moves at a rate of 3 [tex]\frac{ft}{s}[/tex]

So, [tex]\frac{dx}{dt} =3\frac{ft}{s}[/tex]

As we have similar triangles:

[tex]\frac{6}{10} =\frac{y}{x+y}[/tex]

Solving the equation by y:

[tex]4y=6x[/tex]

[tex]y=\frac{3}{2}*x[/tex]

If we derivate the expression:

[tex]\frac{dy}{dt} =\frac{3}{2}\frac{dx}{dt}[/tex]

Knowing that [tex]\frac{dx}{dt} =3\frac{ft}{s}[/tex]

[tex]\frac{dy}{dt} =\frac{3}{2}*(3)=\frac{9}{2}[/tex]

[tex]\frac{d}{dt} (x+y)=\frac{dx}{dt}+\frac{dy}{dt}=3+\frac{9}{2}   =\frac{15}{2} \frac{ft}{s}[/tex]

Ver imagen amhugueth