Answer:
[tex]x=2[/tex] and [tex]y=1[/tex]
Step-by-step explanation:
We have two linear equations
[tex]0.3x-0.2y=0.4[/tex]
[tex]-0.2x+0.5y=0.1[/tex]
Using the methond of elimination of variables, we will mutiply the first equation by 0.2 and the second one by 0.3 to have the same value of the varible x.
[tex](0.3x-0.2y=0.4)0.2[/tex]
[tex](-0.2x+0.5y=0.1)0.3[/tex]
Then
[tex]0.06x-0.04y=0.08[/tex]
[tex]-0.06x+0.15y=0.03[/tex]
Adding both equation we will eliminate the varible x
[tex]0.11y=0.11[/tex]
Then the value of y is [tex]y=1[/tex]
Now with the value of y we can find x, using the value of y in the first equation we have:
[tex]0.3x-0.2(1)=0.4[/tex]
[tex]0.3x-0.2=0.4[/tex]
[tex]0.3x=0.4+0.2[/tex]
[tex]0.3x=0.6[/tex]
[tex]x=\frac{0.6}{0.3}[/tex]
[tex]x=2[/tex]