Answer:
F_n = 5.65E-11 N
d = 1.20682E-31 m
Explanation:
F = 3.8E-09 N
where
m = Mass of electron = 9.109E−31 kilograms
G = Gravitational constant = 6.67E-11 m³/kgs²
x = Distance between them
[tex]F=G\frac{m^2}{x^2}\\\Rightarrow 3.8E-09=G\frac{m^2}{x^2}[/tex]
For [tex]F_n[/tex]
[tex]F_n=G\frac{m^2}{x^2}\\\Rightarrow F_n=G\frac{m^2}{(8.2x)^2}\\\Rightarrow F_n=G\frac{m^2}{67.24x^2}[/tex]
Dividing the above equations we get
[tex]\frac{F}{F_n}=\frac{G\frac{m^2}{x^2}}{G\frac{m^2}{67.24x^2}}\\\Rightarrow \frac{F}{F_n}=67.24\\\Rightarrow F_n=\frac{F}{67.24}\\\Rightarrow F_n=\frac{3.8E-09}{67.24}\\\Rightarrow F_n=5.65E-11\ N[/tex]
F_n = 5.65E-11 N
[tex]F=G\frac{m^2}{x^2}\\\Rightarrow x=\sqrt{\frac{Gm^2}{F}}\\\Rightarrow x=\sqrt{\frac{G}{F}}m\\\Rightarrow x=\sqrt{\frac{6.67E-11}{3.8E-09}}9.109E-31\\\Rightarrow x=1.20682E-31\ m[/tex]
d = 1.20682E-31 m