contestada

Two electrons in a vacuum exert force of F = 3.8E-09 N on each other. They are then moved such that they are separated by x = 8.2 times their original distance. What is the force that the electrons experience at the new distance, F_n, in newtons? Numeric: A numeric value is expected and not an expression. F_n = ______________________________ How far apart were the electrons originally in meters? Numeric: A numeric value is expected and not an expression. d = _________________________________

Respuesta :

Answer:

F_n = 5.65E-11 N

d =  1.20682E-31 m

Explanation:

F = 3.8E-09 N

where

m = Mass of electron = 9.109E−31 kilograms

G = Gravitational constant = 6.67E-11 m³/kgs²

x = Distance between them

[tex]F=G\frac{m^2}{x^2}\\\Rightarrow 3.8E-09=G\frac{m^2}{x^2}[/tex]

For [tex]F_n[/tex]

[tex]F_n=G\frac{m^2}{x^2}\\\Rightarrow F_n=G\frac{m^2}{(8.2x)^2}\\\Rightarrow F_n=G\frac{m^2}{67.24x^2}[/tex]

Dividing the above equations we get

[tex]\frac{F}{F_n}=\frac{G\frac{m^2}{x^2}}{G\frac{m^2}{67.24x^2}}\\\Rightarrow \frac{F}{F_n}=67.24\\\Rightarrow F_n=\frac{F}{67.24}\\\Rightarrow F_n=\frac{3.8E-09}{67.24}\\\Rightarrow F_n=5.65E-11\ N[/tex]

F_n = 5.65E-11 N

[tex]F=G\frac{m^2}{x^2}\\\Rightarrow x=\sqrt{\frac{Gm^2}{F}}\\\Rightarrow x=\sqrt{\frac{G}{F}}m\\\Rightarrow x=\sqrt{\frac{6.67E-11}{3.8E-09}}9.109E-31\\\Rightarrow x=1.20682E-31\ m[/tex]

d =  1.20682E-31 m