Respuesta :
Answer:
Option A) 183 meters
Step-by-step explanation:
see the attached figure to better understand the problem
step 1
Find the distance BC
we know that
In the right triangle ABC
[tex]cos(60\°)=\frac{BC}{AB}[/tex] ----> adjacent side divided by the hypotenuse
Remember that
[tex]cos(60\°)=1/2[/tex]
substitute the values
[tex]1/2=\frac{a}{500}[/tex]
[tex]a=250\ m[/tex]
step 2
Find the distance AC
In the right triangle ABC
[tex]sin(60\°)=\frac{AC}{AB}[/tex] ----> opposite side divided by the hypotenuse
Remember that
[tex]sin(60\°)=\frac{\sqrt{3}}{2}[/tex]
substitute the values
[tex]\frac{\sqrt{3}}{2}=\frac{b}{500}[/tex]
[tex]b=250\sqrt{3}= 433\ m[/tex]
step 3
Find the distance AC+CB
[tex]433+250=683\ m[/tex]
Subtract the distance AB from 683 m
[tex]683-500=183\ m[/tex]
