Answer:
[tex]x = 0.0485 m[/tex]
Explanation:
Total surface area of the box is given as
[tex]A = 2(L\times H + H \times W + W\times L)[/tex]
so we have
[tex]A = 2(0.500\times 0.850 + 0.850 \times 0.500 + 0.500 \times 0.500)[/tex]
so we have
[tex]A = 2.2 m^2[/tex]
now rate of heat flow in conduction mode is given as
[tex]\frac{dQ}{dt} = kA\frac{dT}{dx}[/tex]
here we know
[tex]k = 0.033[/tex]
[tex]dT = 17 - 7 = 10^o C[/tex]
[tex]\frac{dQ}{dt} = \frac{mL}{T}[/tex]
[tex]\frac{dQ}{dt} = \frac{27 \times 335,000}{7\times 24 \times 3600}[/tex]
[tex]\frac{dQ}{dt} = 14.95 watt[/tex]
Now we have
[tex]14.95 = 0.033\times 2.2 \times \frac{10}{x}[/tex]
[tex]x = 0.0485 m[/tex]