Drag the tiles to the boxes to form correct pairs. Simplify each expression, and then make changes the equivalent expressions.

4(2x^2+3y^2)^2 = 16x^4 + 48x^2y^2 + 36y^4
(4x-5)(16x^2 + 20x + 25) = 64x^3 - 125
4 ( 2x^2 + 3y^2)(2x^2 - 3y^2) = 16x^4 -36y^4
hope that helps
Answer :
[tex]64x^3-125[/tex] ≡ [tex](4x-5)(16x^2+20x+25)[/tex]
[tex]4(2x^2+3y^2)^2[/tex] ≡ [tex]16x^4+36y^4+48x^2y^2[/tex]
[tex]4(2x^2+3y^2)(2x^2-3y^2)[/tex] ≡ [tex]16x^4-36y^4[/tex]
Step-by-step explanation :
(a) The given expression is:
[tex]64x^3-125[/tex]
[tex]=(4x)^3-(5)^3[/tex]
Using identity : [tex]a^3-b^3=(a-b)(a^2+2ab+b^2)[/tex]
[tex]=(4x-5)(16x^2+20x+25)[/tex]
(b) The given expression is:
[tex]4(2x^2+3y^2)^2[/tex]
Using identity : [tex](a+b)^2=a^2+2ab+b^2[/tex]
[tex]=4[(2x^2)^2+(3y^2)^2+2(2x^2)(3y^2)][/tex]
[tex]=4[4x^4+9y^4+12x^2y^2][/tex]
[tex]=16x^4+36y^4+48x^2y^2[/tex]
(c) The given expression is:
[tex]4(2x^2+3y^2)(2x^2-3y^2)[/tex]
Using identity : [tex](a+b)(a-b)=a^2-b^2[/tex]
[tex]=4[(2x^2)^2-(3y^2)^2][/tex]
[tex]=4[4x^4-9y^4][/tex]
[tex]=16x^4-36y^4[/tex]