contestada

Drag the tiles to the boxes to form correct pairs. Simplify each expression, and then make changes the equivalent expressions.

Drag the tiles to the boxes to form correct pairs Simplify each expression and then make changes the equivalent expressions class=

Respuesta :

4(2x^2+3y^2)^2 = 16x^4 + 48x^2y^2 + 36y^4

(4x-5)(16x^2 + 20x + 25) = 64x^3 - 125

4 ( 2x^2 + 3y^2)(2x^2 - 3y^2) = 16x^4 -36y^4

hope that helps

Answer :

[tex]64x^3-125[/tex] ≡ [tex](4x-5)(16x^2+20x+25)[/tex]

[tex]4(2x^2+3y^2)^2[/tex] ≡ [tex]16x^4+36y^4+48x^2y^2[/tex]

[tex]4(2x^2+3y^2)(2x^2-3y^2)[/tex] ≡ [tex]16x^4-36y^4[/tex]

Step-by-step explanation :

(a) The given expression is:

[tex]64x^3-125[/tex]

[tex]=(4x)^3-(5)^3[/tex]

Using identity : [tex]a^3-b^3=(a-b)(a^2+2ab+b^2)[/tex]

[tex]=(4x-5)(16x^2+20x+25)[/tex]

(b) The given expression is:

[tex]4(2x^2+3y^2)^2[/tex]

Using identity : [tex](a+b)^2=a^2+2ab+b^2[/tex]

[tex]=4[(2x^2)^2+(3y^2)^2+2(2x^2)(3y^2)][/tex]

[tex]=4[4x^4+9y^4+12x^2y^2][/tex]

[tex]=16x^4+36y^4+48x^2y^2[/tex]

(c) The given expression is:

[tex]4(2x^2+3y^2)(2x^2-3y^2)[/tex]

Using identity : [tex](a+b)(a-b)=a^2-b^2[/tex]

[tex]=4[(2x^2)^2-(3y^2)^2][/tex]

[tex]=4[4x^4-9y^4][/tex]

[tex]=16x^4-36y^4[/tex]