Answer:
C
Step-by-step explanation:
EFGH is a kite, so EF ≅ FG and EH ≅ HG.
The area of the kite consists of two area of triangles EFG and EHG.
1. Area of triangle EFG:
[tex]A_{\trangle EFG}=\dfrac{1}{2}\cdot EG\cdot h,[/tex]
where h is the height drawn from point F to the side EG.
1. Area of triangle EHG:
[tex]A_{\trangle EHG}=\dfrac{1}{2}\cdot EG\cdot H,[/tex]
where H is the height drawn from point H to the side EG.
3. Note that
[tex]EG \cong \text{rectangle's length}[/tex]
[tex]h+H\cong \text{rectangle's width}[/tex]
So,
[tex]A_{\text{kite }EFGH}\\ \\=A_{\triangle EFG}+A_{\triangle EHG}\\ \\=\dfrac{1}{2}\cdot EG\cdot (h+H)\\ \\=\dfrac{1}{2}\cdot \text{rectangle's length}\cdot \text{rectangle's width}\\ \\=\dfrac{1}{2}A_{\text{rectangle}}[/tex]
Thus, option C is true (the area of the kite doesn't depend on ratio in which points E and G divide the side)