Find the equation of the perpendicular bisector of the segment AB, if A(3, 0) and B(–1, 2). If the perpendicular bisector of AB intercepts the x-axis at point P, what are the lengths of PA and PB?

Respuesta :

Answer:

Part 1) The equation of the perpendicular bisector of the segment AB is

[tex]y-1=2(x-1)[/tex]  or  [tex]y=2x-1[/tex]

Part 2) [tex]dPA=2.5\ units[/tex]

Part 3) [tex]dPB=2.5\ units[/tex]

Step-by-step explanation:

step 1

Find the midpoint AB (because a bisector divide into two equal parts)

we have

A(3, 0) and B(–1, 2)

[tex]M=(\frac{3-1}{2},\frac{0+2}{2})[/tex]

[tex]M=(1,1)[/tex]

step 2

Find the slope AB

we have

A(3, 0) and B(–1, 2)

The formula to calculate the slope between two points is equal to

[tex]m=\frac{y2-y1}{x2-x1}[/tex]

substitute the values

[tex]mAB=\frac{2-0}{-1-3}[/tex]

[tex]mAB=\frac{2}{-4}[/tex]

[tex]mAB=-\frac{1}{2}[/tex]

step 3

Find the slope of the perpendicular bisector of the segment AB

Remember that

If two lines are perpendicular, then their slopes are opposite reciprocal (the product is equal to -1)

m1*m2=-1

we have

[tex]m1=-\frac{1}{2}[/tex]

so

[tex]m2=2[/tex]

step 4

Find the equation of the perpendicular bisector of the segment AB

[tex]y-y1=m(x-x1)[/tex]

we have

[tex]m=2[/tex]

[tex](x1,y1)=(1,1)[/tex] -----> midpoint AB

substitute

[tex]y-1=2(x-1)[/tex]

Convert to slope intercept form

[tex]y=2x-2+1\\y=2x-1[/tex]

step 5

Find the x-intercept (point P)

For y=0

0=2x-1

2x=1

x=0.5

The x-intercept is the point P(0.5,0)

step 6

Find the length PA

we have

P(0.5,0),A(3,0)

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

substitute the values

[tex]d=\sqrt{(0-0)^{2}+(3-0.5)^{2}}[/tex]

[tex]d=\sqrt{(0)^{2}+(2.5)^{2}}[/tex]

[tex]dPA=2.5\ units[/tex]

step 7

Find the length PB

we have

P(0.5,0),B(-1,2)

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

substitute the values

[tex]d=\sqrt{(2-0)^{2}+(-1-0.5)^{2}}[/tex]

[tex]d=\sqrt{(2)^{2}+(-1.5)^{2}}[/tex]

[tex]dPB=2.5\ units[/tex]