Answer:
[tex]h=1.99 miles[/tex]
Step-by-step explanation:
Let's call [tex]h[/tex] the balloon's height above the ground and [tex]b[/tex] the horizontal distance between the balloon and the first milepost.
If the angle of the depression of this milepost is 24 degrees, we can say the following:
[tex]tan(24)=\frac{h}{b}[/tex]
[tex]b=\frac{h}{tan(24)}[/tex](equation 1)
For the next milepost, the horizontal distance between the balloon and tihs milepost will be [tex](b+1)miles[/tex] and the angle of depression will be 20 degrees, so we can say the following
[tex]tan(20)=\frac{h}{b+1}[/tex]
[tex]b+1=\frac{h}{tan(20)}[/tex]
[tex]b=\frac{h}{tan20}-1[/tex]
then, replacing from equation 1
[tex]\frac{h}{tan(24)} =\frac{h}{tan(20)}-1[/tex]
[tex]1 =\frac{h}{tan(20)}-\frac{h}{tan(24)}[/tex]
[tex]1 =h*(\frac{1}{tan(20)}-\frac{1}{tan(24)})[/tex]
[tex]h=\frac{1}{(\frac{1}{tan(20)}-\frac{1}{tan(24)})}[/tex]
Resolving, we'll find the value of [tex]h[/tex]
[tex]h=1.99 miles[/tex]
So, the balloon's height above the ground is 1.99miles