Respuesta :

Answer:

m<AFE​ =  128°.

Step-by-step explanation:

Step 1: Find the value of x

Angle EFD + Angle DFC = Angle EFC

5x + 6 + 19x - 15 = 17x + 19

24x - 9 = 17x + 19

7x = 28

x = 4

Step 2: Find all angles

Angle AFB=Angle EFD= 5x + 6

5(4) + 6 = 26°

Angle DFC = 19x - 15

19(4) - 15 = 61°

Step 3: Find angle AFE

Line BD is a straight line and all angles on a straight line are equal to 180°.

Angle AFB + Angle AFE + Angle EFD = 180°

26 + BFC + 26 = 180°

BFC = 180 - 52

BFC = 128°

Therefore, m<AFE​ is equal to 128°.

!!

The measure of m<AFE  if m<EFD = (5x+6)°, m<DFC = (19x-15)°, and m<EFC = (17x+19)° is 128degrees

Angle is the point where two or more lines meet. From the given diagram:

m<EFC = m<EFD + m<DFC

Given the following:

m<EFC = 17x + 19

m<EFD = 5x+6

m<DFC = 19x - 15

Substitute the given values into the expression

17x + 19 = 5x + 6 + 19x - 15

17x - 5x - 19x = -19 - 9

12x - 19x = -28

-7x = - 28

x = 28/7

x= 4

Get the angle m<AFE

m<AFE  + m<ABF + m<EFD = 180

Since  <AFB = <EFD

m<AFE  + m<EFD + m<EFD = 180

m<AFE + 2m<EFD = 180

m<AFE + 2(5x+6) = 180

m<AFE + 2(5(4) + 6) = 180

m<AFE +2(26) = 180

m<AFE + 52 = 180

m<AFE = 180 - 52

m<AFE = 128 degrees

Hence the measure of m<AFE is 128degrees

Learn more here: https://brainly.com/question/16686601