Answer:
The rate is [tex] 4,5 \times 10^{-5}\frac{mole}{Ls}[/tex]
Explanation:
Stoichiometry
[tex]CH_{3}Cl+NaOH \rightarrow CH_{3}OH+NaCl [/tex]
Kinetics
[tex]-r_{A}=k \times [CH_{3}Cl] \times [NaOH] [/tex]
The rate constant K can be calculated by replacing with the initial data
[tex] 1 \times 10^{-4}\frac{mole}{Ls}=k \times [0,2M] \times [1,0M] =5 \times 10^{-4}\frac{L}{mole s}[/tex]
Taking as a base of calculus 1L, when half of the [tex] CH_{3}Cl [/tex] is consumed the mixture is composed by
[tex] 0,1 mole CH_{3}Cl [/tex] (half is consumed)
[tex] 0,9 mole NaOH [/tex] (by stoicheometry)
[tex] 0,1 mole CH_{3}OH [/tex]
[tex] 0,1 mole NaCl [/tex]
Then, the rate is
[tex]-r_{A}=5 \times 10^{-4} \frac{L}{mole s}\times 0,1M \times 0,9 M=4,5 \times 10^{-5}\frac{mole}{Ls}[/tex]
The reaction rate decreases because there’s a smaller concentration of reactives.