Answer:
4.933m/s
Explanation:
the wagon has a weight of 35.1kg*9.81m/s2 = 343.98N
of that weight 343.98N*sin(18.3)=108N are parallel to the hill and oposit tothe tension of the rope.
then, the force that is moving the wagon is 125N-108N=17N
F=m*a then 17N=35.1kg*a
a=0.4843 m/s2
we have two equations
[tex]v=a.t\\x=v.t+\frac{1}{2} . a . t^{2}[/tex]
then
[tex]x=a.t^{2} +\frac{1}{2}. a t^{2} \\x=\frac{3}{2}. a t^{2}[/tex]
[tex]t=\sqrt{\frac{2x}{3a} }[/tex]
t=10.188s
[tex]v=a.t[/tex]
v=4.933 m/s