Answer:
The diameter of the oil molecule is [tex]4.4674\times 10^{-8} cm[/tex] .
Explanation:
Mass of the oil drop = [tex]m=9.00\times 10^{-7} kg[/tex]
Density of the oil drop = [tex]d=918 kg/m^3[/tex]
Volume of the oil drop: v
[tex]d=\frac{m}{v}[/tex]
[tex]v=\frac{m}{d}=\frac{9.00\times 10^{-7} kg}{918 kg/m^3}[/tex]
Thickness of the oil drop is 1 molecule thick.So, let the thickness of the drop or diameter of the molecule be x.
Radius of the oil drop on the water surface,r = 41.8 cm = 0.418 m
1 cm = 0.01 m
Surface of the sphere is given as: a = [tex]4\pi r^2[/tex]
[tex]a=4\times 3.14\times (0.418 m)^2=2.1945 m^2[/tex]
Volume of the oil drop = v = Area × thickness
[tex]\frac{9.00\times 10^{-7} kg}{918 kg/m^3}=2.1945 m^2\times x[/tex]
[tex]x= 4.4674\times 10^{-10} m= 4.4674\times 10^{-8} cm[/tex]
The thickness of the oil drop is [tex]4.4674\times 10^{-8} cm[/tex] and so is the diameter of the molecule.