Use the point-slope formula to write an equation of the line that passes through (-5,3) and
(4,6). Write the answer in slope-intercept form (if possible).

Respuesta :

Answer:

The equation in point slope form is [tex]y-6=\frac{1}{3}(x-4)[/tex]

The equation in slope intercept form is [tex]y=\frac{1}{3}x-\frac{14}{3}[/tex]

Step-by-step explanation:

step 1

Find the slope m

The formula to calculate the slope between two points is equal to

[tex]m=\frac{y2-y1}{x2-x1}[/tex]

we have

[tex](-5,3),(4,6)[/tex]

Substitute the values

[tex]m=\frac{6-3}{4+5}[/tex]

[tex]m=\frac{3}{9}[/tex]

simplify

[tex]m=\frac{1}{3}[/tex]

step 2

Find the equation of the line in point slope form

[tex]y-y1=m(x-x1)[/tex]

we have

[tex]m=\frac{1}{3}[/tex]

[tex](4,6)[/tex]

substitute

[tex]y-6=\frac{1}{3}(x-4)[/tex] ---> equation in point slope form

step 3

Find the equation of the line in slope intercept form

[tex]y=mx+b[/tex]

[tex]y-6=\frac{1}{3}(x-4)[/tex] ----> convert to slope intercept form

[tex]y-6=\frac{1}{3}x-\frac{4}{3}[/tex]

[tex]y=\frac{1}{3}x-\frac{4}{3}+6[/tex]

[tex]y=\frac{1}{3}x-\frac{14}{3}[/tex]