Answer:
Project A should be accepted NPV 3,948.77
Project B should be rejected NPV -7.086,76
Explanation:
We will calculate the present value of each cash flow at the discount rate of 11.5% using the formula for present value of a lump sum:
[tex]\frac{Nominal}{(1 + rate)^{time} } = PV[/tex]
rate for each cashflow will be 11.5%
time will be the year of the cashflow
and the nominal each cash flow
Project B:
Year 1
[tex]\frac{18400}{(1 + 0.115)^{1} } = PV[/tex]
PV 16,502.24
Year 2
[tex]\frac{22700}{(1 + 0.115)^{2} } = PV[/tex]
PV 18,258.96
Year 3
[tex]\frac{51500}{(1 + 0.115)^{3} } = PV[/tex]
PV 37,152.04
Total discounted cashflow: 71,913.24
NPV: discounted cashflow - investment
71,913.24 - 79,000 = -7.086,76
Project B should be rejected NPV -7.086,76
Project A:
Year 1:
[tex]\frac{18400}{(1 + 0.115)^{1} } = PV[/tex]
PV 16,502.24
Year 2:
[tex]\frac{26300}{(1 + 0.115)^{2} } = PV[/tex]
PV 21,154.66
Year 3:
[tex]\frac{57100}{(1 + 0.115)^{3} } = PV[/tex]
PV 41,191.87
Total discounted cashflow: 78.848,77
NPV:discounted cashflow - investment
78,848.77 - 74,900 = 3,948.77
Project A should be accepted NPV 3,948.77