Answer:
K = 1.72 *10^{-11} N/m
Explanation:
given data:
L= 2.14*10^{-6} m
[tex]\Delta = 1.4%* of L[/tex]
[tex]= \frac{1.4}{100} *2.14*10^{-6}[/tex]
= 2.99*10^{-8} m
[tex]L' = L - \Delta L[/tex]
[tex]L ' = 2.14*10^{-6} -2.99*10^{-8}[/tex]
[tex]L = 2.11*10^{-6} m[/tex]
electrostatic force = spring force
[tex]\frac{ kq^2}{L'^2} = K \Delta L[/tex]
putting all equation to get spring constant K value
[tex]\frac{8.98*10^9 *1.6*10^{-19}}{2.11*10^{-6}} = K 2.99*10^{-8}[/tex]
K = 1.72 *10^{-11} N/m